Thermal Physics

Name	
------	--

	melting point	specific heat capacity	specific latent heat of fusion	density
	°C	J/kg°C	kJ/kg	kg/m ³
aluminium	660	900	399	2700
lead	328	160	25	11300
magnesium	650	1020	348	1740
tungsten	3422	134	191	1930
zinc	420	387	113	7140

1. A 500cm³ block of each of these metals is made. Put them in order of their mass (lowest to highest):

2. A 1kg block of each of these metals is made. Put them in order of their volume (lowest to highest):

- 3. A 1kg block of each of these metals is at room temperature (20°C). Each is heated with a 100W heater for ten minutes. They are insulated with foam, so you can assume no heat is lost to the surroundings.
 - a. How much energy is transferred to each block?

- b. Which block is the hottest after the ten minutes?
- c. Which block is the coolest?

d. Calculate the final temperature of the block in part c.

- 4. 5kg blocks of each material are put in a kiln at room temperature. The temperature of the kiln is very slowly increased up to 3500°C.
 - a. Write down the order in which the blocks start to melt:
 - b. Complete this graph to show what happens to the temperature of the zinc from room temperature to 1000°C. (no need for numbers on the time axis)

c. How much energy is transferred to the zinc block from when it starts to melt to when it has completely melted?

- d. The kiln is switched off and cools down, and the molten metals solidify again.
 - i. How much energy is released by the molten magnesium when it solidifies?

ii. How much energy is released by the magnesium when it cools from 500°C to 200°C?